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Time structure of chaotic attractors: A graphical view
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We present a simple and computationally inexpensive graphical method that unveils subtle correlations
between short sequences of a chaotic time series. Similar events, even from noisy and nonstationary data, are
clustered together and appear as well-defined patterns on a two-dimensional diagram and can be quantified.
The general method is applied to the electrocardiogram of a patient with a malfunctioning pacemaker, the
residence times of trajectories in the Lorenz attractor as well as the logistic map. In each case the diagrams
unveil different aspects of the system’s dynam[&1063-651X97)06607-3

PACS numbg(s): 07.05.Rm, 05.45:b, 87.90+y, 02.30.Lt

I. INTRODUCTION tion as well as from the phase-space construction and first-
return mapg23-2§.

The characterization of chaotic attractors from a time se- In the second example we consider a time series com-
ries analysis in general requires long, noiseless, and statiofposed of the successive residence timesf the trajectories
ary data sets, which are not always availallle6]. On the  of the Lorenz attractor in the basin of attraction of the two
other hand, the existing algorithms, such as the dimensiofixed points across the plane=0. We also consider the
estimation or the evaluation of Lyapunov exponents or ensuccession of time$; when trajectories cross the plane only
tropies, are prone to some degree of efi¢17]. In general, in one dirgction.Ti represent the unstable pe_riods of t_he
with these methods it is difficult to distinguish between twoSyStem. It is shown that in both cases well-defined relation-
chaotic dynamics that have similar invariants of motion. InSHiPS between the successive residence times and successive
addition, these methods are computationally expensive a riodsT; exist. Moreover, in the first case, the structure of

time consuming. Moreover, whenever the differential equa-t e first-order \_/arlab|llty @agrams could be .related. to th_e
number of rotations of trajectories around a given point. It is

tions describing the chaotic attractors are available, it may lso shown that the acceleration and deceleration of dynami-

happen that a very small change in one of the parameters W@al events follow different rules.

change completely the nature of the chaotic attractor. It may In the third example we examine the logistic map, consid-

not always be possible to detect these changes by the uS‘L{@rjed in the chaotic regime. Here we also show that a small

methods. In this paper we show that a graphical method witl,ange of the bifurcation parameter introduces a new se-
similarity to the technique of the first-return mai8—20,  guence of events, indicating a qualitative change in the na-
correlating three, four, five, etc., events, can be very inforyre of the attractor, which can be seen immediately with the
mative in reveling subtle differences between two differenthe|p of the graphical method.

time series. The method is extremely simple and computa-

tionally economical21,22. The correlations are displayed

in two-dimensional Yariability diagramg' for easy visual IIl. VARIABILITY DIAGRAMS

inspection. In the presence of deterministic chaos, well- \we consider a time series representing discrete temporal

convenient visual tool for unveiling some detailed aspects ofienoted byr;. This time series may result either from an

system dynamics. It also enables quantification of regulafinknown dynamical system or as a solution to a set of dif-

sequences of data of various lengths and the clustering @érential equations or chaotic maps. Higher-order forward

similar events. differences for a set of equally spaced discrete variables of a
We shall illustrate the method by studying three attracfunctionr at a pointi are defined ag27]

tors. In the first example, a time series is obtained by mea-

suring the time interval between two successive heartbeats

denoted as RR of a patient with an implemented malfunc- n n

tioning pacemaker. We show how in this case useful and A= (_1)k(k)ri+nkv in=123....

detailed quantitative information could be obtained from k=0

various diagrams, which are not available with other stan-

dard techniques of medical literature such as the fast Fouridgfrom m consecutive points, we construct andimensional

transform and the standard deviation of the distribution funcvector in the following manner:
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FIG. 1. (a) First-return map constructed from time intervals between two heart @&s The 24-h recording was obtained from a

Holter device(b) First-order variability diagram(c) Second-order variability diagrartd) First-order diagram of RR intervals from the 24-h
Holter recording of a normal individual.

n n If n=1 andm=2, thenXY=r;,,—r; and X'¥,=r,,,
XMW= (—1)"( k)ri+n_k, —r;., and we speak of &irst-order variability diagram in
k=0 two dimensions. This diagram correlates three successive
values. By nature of its construction, if three magnitudes are
—_— [N B identical, thenX"=x{}),=0. Any positive or negative
xi+1_k20 (=1 k|Fi+n+1-k: n=0,12... (1)  value of coordinates indicates a departure from absolute pe-

riodicity in the values of . If X®)>0 andx{});>0, then we
are in the presence of three successive intervals such that, at
each step the value ofincreases. If represents time inter-
N vals, this shows a kind of deceleration in the dynamical pro-
xm 2 (_1)k( n)r- cess. The corresponding point will populate quadrargeke
Hm-17 k) itn+m-1-ko Fig. 1(b)]. On the contraryX{"<0 andX{Y;<0 indicate a
gradual shortening of the valuesgfthus an acceleration of
which projects the evolution of the system’s dynamics intothe process. The corresponding point appears in quadrant 1.
an m-dimensional spacen is the number of consecutive el- Short-long-short values af are represented by{”>0 and

ements in a time series. In the presence of chaotic dynamicg(?); <0, whereasx(V'<0 andx(%)

1 i¥1>0 are related to long-
well-defined structures for ati could be seen. short-long values. They populate, respectively, quadrants I

For the particular case=0 andm=2, one recovers the and IV. Let us note that the first-order variability diagram is
familiar first-return map, which is denoted as the zeroth-a very different projection from the first-return map con-
order *“variability diagram” and correlates two adjacent structed in three-dimensional space, which also correlates
points[see Fig. 1a)]. these quantitief28].
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A second-ordewariability diagram can be constructed by diagram is that the two small patches represent, respectively,
taking n=2 and m=2; then X\?=r;,,—2r;,,+r; and RRintervals of 320-500 msec followed by short intervals of
X2 =ri,3—2ri,»+ri,1. Figure 1c) shows such a dia- 100-150msec and the same short interval followed by large

gram. The points on the diagonal obey the relatiorr; intervals ranging between 350 and 575 msec. The content of
—3r,,+3r,,—I;,3=0, whereas the diagonBl is the lo-  the third patch is still less informative as it merely describes
cus of points such as . ;—r;=r 3~ ;5. RR intervals in the range 375-700 msec that follow each

Once a pattern is seen in a low-order diagram, the numerRther. o _
cal value of ther; forming the pattern can be found easily. 0 our variability diagrams the number of patches in-
For example, in the case of a first-order diagram, we choosg'®ases as the order of diagrams increases. Therefore, the
a pattern or a piece of pattern of interest and isolate th&esolution of the sequence analysis increases substantially.
corresponding points. We construct a first-return map fronMMoreover, the successive values of longer pieces of data be-
these points only, which will reveal their numerical values if come available. Figures(t) and Xc) exhibit, respectively,
combined with information obtained from the first-order dia- the first- and second-order variability diagrams. In a diagram
gram. If, for example, the pattern emerges from quadrant Pf nth order, each point has a coordinate defined by
X®=>0 andx{});>0), following the definition of Eqs(1),

n
we have the extra informatiomn;,,>r;,,>r; needed in X-“”zE (_1)k(n .
combination with first-return maps to determine the exact &0 k) ke
values of successive threesomes. This procedure will become )
more clear in the next section. Similar reasoning is used for n n
a second-order diagram in two dimensions. Again, this will Xi(i)l:kEo (—1)"( K|Fien+i-k-

be illustrated in the following section.
As the order of diagrams increases, the interpretation of

. : . e Let us analyze in detail some subparts of the first-order
patterns in two-dimensional space becomes difficult; NeVer . ram. According to the definition of E €). quadrant |
theless, they still are very useful for a visual inspection of gram. 9 9. q

. L . .corresponds to a deceleration of the heart over three RR in-
system dynamics. However, as the origin of coordinates '?ervalsp For example. we consider the patch denoted b

i i . ple, p 1y
also the locus oh+2 successive and equal values inran . ,
~ . X .. Fig. 1(b) and construct the first-return map only from these
=2 space, Eqq1) are a means of sorting out, displaying in

L oints. From the discussion Sec. Il, it is easy to find that
a cluster, and also quantifying all these almost equal : : . :

o hree successive RR intervals in the neighborhood of 145,
stretches whenever they arise in a long data set.

Let us note that the first-order variability diagram can be375’ and 535 msefsee Fig. 2] contribute to the HRV.

considered as the mapping of the forward differences of th?mnaﬂy’ the analysis oPy, in quadrant Ill shows contri-

function at two successive points, whereas the second-ord ﬁgorrllss;ncthgi n&gfgg)orirsm&% C}:rtsr:i;ﬁ?#ergges foonos:trALfL?égnd
diagram is the mapping of second-order differences taken % - ™19 P

two adjacent points. As the order of the diagrams increase (rb?g] ;{/Cee f:*eg:aeddugglmztI?w%aé??érg]nﬁggdijaeﬁc;gﬁ;qig_
the domain of correlations increases also. Inspired by thi ' q ' '

idea, we introduced the method of variability diagrams,and 380 msec and 620, 380.’ and 6.20 Mmssmntribute to
which should not be confused with multidimensional first- P2th P In the same fashlon.a piece for quadrant 1V
return maps. (Py) shows the following event;. '130, 380, and 130 msec
and 400, 650 and 400 msec. This illustrates the fact that the
diagrams cluster together sequences of events that conserve a
ll. CARDIAC ATTRACTOR given relationship. Referring to the definition of the first-
Prder diagram, the points contained in a square of half-width
of 50 msec centered around the origin give an estimation of

electrocardiogram of this patient was recorded over 24 régg] re_lghqlarltr)]/ pf the” heart olr smgifrhythm 0;/e5r0three bgats
with a Holter device and the time interval between two sucL<2: 'NIS cNOICE allows only a ditterence o msec be-

cessive beats, so-called RR intervals, were evaluated witf§/een two successive RR intervals. In our example, if a first-

commercial software. Even if the heart of a patient were €turn map is constructed from these points, the regularity

normal, a degree of variability would still be seen. FigureOnly appears in the range 450-550 msec and includes

1(d) depicts the first-order variability diagram of a normal 32.47% of the total data, indicating the degree of efficiency

individual. It is seen that the difference between two succes(—)f the _pacemaker. This contra'_sts W'th.th.e value O.f 7.5 -36%
und in the normal heart of Fig.(d). Similar quantitative

sive RR intervals does not exceed 200 msec. However, in thg\? ;

case of our patient the pacemaker did not fulfill its role prop- iscussions could be made for all patches or any chasen ar-

erly and could not restore normal dynamics of the cardia®®s of the large central patch. N .

activity. There is a competition between the ailing heart and N.OW let us analyze the second-order variability diagram

the pacemaker. This gives rise to an extremely large heal f Fig. j(.c)' Agal_n every patch CO.UId be analyzed separately

rate variability(HRV). The analysis of the temporal struc- . y keeping in mind that We are in the presence of four RR

tures and the numerical values of the sequences of events |i|atervals, denoted as, which obey

this particular heart may furnish valuable clues to the cardi- X(2) =

0|Ogist_ i _ri+2_2ri+1+ri! (3)
Figure Xa) shows the first-return map of this patient. The o

HRV is separated into three parts. All we can say from this Xi¥1=Tis3=2M2H gy,

A patient with a cardiac pathology received a pacemake
implant, which unfortunately did not function properly. The
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. in Fig. 1.
['3
— 600 ".'. . . .
© the events obeying the definition of Eq8); thus they follow
@ a sort of regular behavior. Moreover, the points around the
E . . origin of diagrams of all order stem from complex relation-
‘:_1 400 ’ PR ships between RR intervals. However, very close to the ori-

gin, the most probable combination is a sequence of almost
equal RR intervals. Figure 3 shows the percentages of these
200 j sequences contained in a square centered at the origin of a
o half-width of 25, 10, and 5 msec, respectively, for variability
: - diagrams up to order 10. These values must be compared
‘ with the 5-msec error measurements of RR values.
0 0 200 400 600 ) 200 We see that with the help of variability diagrams it is
r, (msec) possible to analyze in detail short stretches of cardiac events
! over 24-h periods, find the regularities, and evaluate se-
FIG. 2. (3 First-return map of selected points from the pattern AU€NCe values. The fact that these results are displayed on a

in the square®, in Fig. 1(b). (b) First-return map of selected points two-dimensional diagram and require an extremely simple

from a square aP, in Fig. 1(b). and fast algorithm makes it of great value for medical diag-
noses.

The RR values obtained from the first-return map together

with the sign and numerical values ¥? andX{?),; for a IV. LORENZ ATTRACTOR

given patch makes it possible, for example, to conclude that _ ) S _
the structurePy in quadrant Il has contributions from the  In this section we use the variability diagrams to unveil
vicinity of the four successions of 270, 530, 140, and 53050me aspects of temporal structures that arise in the well-
msec. The number of points in the square of the half-widtdnown Lorenz attractor. The Lorenz attractor is described by
of 50 msec centered around the origin accounts for 23.63%41€ set of dimensionless differential equations

of that of the total data. Let us note that this number encom-

passes not only a sinus rhythm but also all foursomes obey- dx _p

ing Egs.(3). The same analysis can be performed for any dt ((y=x),
selected area in the second-order variability diagram with the

help of the graphical method presented in this paper. d

—y=—xz+rx—y,

Let us note that all points on the diagonal B of the second- T

order diagram have a particular relationship X&), =
—Xi(z) and they correspond to an alternation in the four con-
secutive RR intervals. d_z =xy—bz (4)

The analysis of higher-order diagrams is not easy. How- dt '
ever, they can still be useful in two ways. A visual inspection
of the diagrams may furnish information about the time sewith P,=10, b=2.66, andr=28. With this set of param-
ries. Although it is not easy to estimate the valuesief2 eters the dynamics described by E@4) exhibits chaotic
successive events for all patches, the fact that a patch exidtehavior. The trajectories of the system evolve around two
indicates the existence of privileged relationships betweefixed points with random residence times.
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20.0 @) trary, in the lower half plane they indicate two largefol-
lowed by a much smaller time.

10.0 1 From the first-order variability diagram we can deduce the

oo I t, tiz pattern of rotation of trajectories around the two fixed points

x(t)

around one of the fixed points before the transition to the
basin of attraction of the second fixed point and measure the

: Tt tis in the course of three transitions across x#0 plane. We
ool " \/\/\N consider the number of rotations made by the trajectories

-20.0

0.0 5.0 10.0 time. Figure 6 shows this number as a function of time. As
expected, for a given number of rotations, a large time varia-
20.0 ) . tion is seen. If one neglects regions of small overlaps with
small probability, it is possible to correlate residence times
10.0 ] with the number of turns around one of the fixed points. In
- T, T. overlapping regions an error of one turn is possible.
- i i+2 o . .
x 00 T Toal Let us consider the cluster of points around the origin in
" * the square of siz(—0.3,—0.3),(0.3,0.3). It accounts for
-100 - \N‘ 17.737% of data set and by construction indicates three al-
200 [ . most equalt; in succession. A first-return map constructed
“o.0 10.0 20.0 only from these point§see Fig. %d)] gives thet; for each
t threesome. With the help of Fig. 6 we see that one to six
consecutive and equal turns are possible in this data set.
FIG. 4. Temporal evolution of variable(t) of the Lorenz at- A similar analysis indicates that the first structusesn
tractor. (a) Definition of t;. (b) Definition of T;. All variables and the diagona| in quadrant[see F|g ﬂ))] group a succession
parameters are dimensionless. of residence times such that in each step one more turn is

added to the trajectorigd.496%. The lowest combination
Two series of events will be considered. In the first casas one turn followed by two and three turns. The reverse
we record the residence timgaround each fixed poif9].  situation is seen for the first structurbon the diagonal of
Figure 4a) shows the time of passage acrossxked plane. quadrant I11(1.502%. Here a high number of rotations de-
In the second cas&;=t;+t;,, is the sum of the two suc- creases by a unit in each transition. The lowest combination
cessive residence times around each fixed point or the peridgd 3, 2, and 1.
of an unstable orbifFig. 4(b)]. In substructureg two n turns are followed by am+1
Figure 5a) shows the general structure of the first-orderturn, with a minimum oh=2 (0.733%. In d the succession
variability diagram constructed from the time seriesOne  is n, n+1, andn with n,;,=1 (5.859%. Structures further
sees immediately well-defined and quantized structures iaway from the center indicate a larger variation in the num-
the case of Lorenz attractor, whereas a random noise wilber of successive turns. For example, if we consider only the
show a homogenous distribution of intervsl]. The de-  various L-shaped curves on the diagonal of quadrant IV the
tails of the structure as well as its general shape result frorfollowing combination[25] are seen starting from substruc-
the distribution function oft;, which is not uniform and tured: 1, 2, and 1 and 1, 3, and 2.854%; 1, 4, and 1
exhibits several discrete peaks. This fact explains the blurredl.6345%, etc. Ine of quadrant Il we have+1, n, andn
boundaries of the diagram and also the form of the structure- 1 with 0.4% of the data set.
in the second quadrant. Such a detailed analysis of the temporal picture of the
In the first-order variability diagram, all four quadrants attractor can be performed for all substructures or any small
exhibit different densities of the population of points. Figurepiece of a substructure of Fig(d&. The following picture
5(b) is a magnification of the events in the vicinity of the emerges from this analysis. For the data set considered, all
origin of the axis. One sees immediately several well-define¢dombinations of the numbers of rotations are possible. How-
curves, which suggest well-defined temporal sequencegver, the most probable one is three successive transitions of
However, the most salient feature is the assymmetry betweethe same number of turns. The next most probable combina-
the four quadrants. From the definition of the first-order dia-tion is 1,n, and 1, withn=2-4,
gram we infer that three successive shortening, three succes- Figure §c) shows the details in the vicinity of the origin
sive increasing, and long-short-long and short-long-shorof the second-order variability diagram. One still sees well-
times are not related in the same manner. A detailed inspedefined patterns and dissymmetry of curves in the four quad-
tion of other substructures shows again that in each quadranénts. Keeping the integration time constant, we constructed
a different structure is seen. diagrams up to eight order. At this order one still sees struc-
The first-order variability diagram can furnish detailed in- tured patterns, although somewhat blurred. This may be due
formation about the physiognomy of the attractor. Thein part to the fact that as the order of diagrams increases the
checkerboard-type structure is specific to the Lorenz attraczoordinates of points also increagsse definitiong2)] and
tor. Each element of the checkerboard is a grouping of althere are few points for defining a curve. An analysis similar
t; with a well-defined relationship regardless of the intrinsicto the one performed above is still possible for second-order
magnitude. The U-shaped patterns are predominant in theariability diagrams and will not be reported here.
upper half plane. They indicate that tvip of comparable Second-order variability diagrams fromare convenient
magnitude are followed by a much larggr On the con- visual aides for finding the first-order periods of the Lorenz
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(b) Magnification of the diagram in the vicinity of the origin.

(c) Magnification of a second-order variability diagrafd) First-return map constructed from the points around the origindbjinAll

variables and parameters are dimensionless.

attractor. Indeed, by constructijpee Eqgs(2)] we see that
the intersection of the diagonal in quadrants Il and IV with
the patterns are the locus of points such as i(—t;)
=(ti3—t;.2) and therefore defines an order-one orbit as
two successive times define a period.

The general aspect of the first-order variability diagram
constructed fronT; is the same as in the preceding césee
Fig. 7). However, as expected, the individual subpatterns
show a different structure. A magnification of events around
the origin is depicted in Fig. 7 and again we see marked
dissymmetries between events in the four quadrants. As ex-
pected, we see a more complex relationship than the one
shown in the first-order variability diagrams constructed
fromt; .

In the present case the diagrams become blurred at fourth
order asT; is much longer thaty . Here the number of points
defining a curve decrease rapidly in parallel with the increase
in the value of the coordinates.

Referring to the definition of;, we see that presently the

Number of Rotations

1 5 T T T T T

10 | —

L !

2 3 4 5 6 7
Residence time

8 9 10

FIG. 6. Number of rotations as a function of residence time for
first-order orbits of the Lorenz attractor are found by takingthe Lorenz attractor. All variables and parameters are dimension-
all points in the vicinity of the origin. The first-return map less.



1194 P. MAURER, HAI-DA WANG, AND A. BABLOYANTZ 56

1.0 3.0
- (a) . )
0.0 0.0 \4
- -1.0 : -3.0 :
& -1.0 0.01 1.0 -3.0 0.0 3.0
[ X(i) x?
ol 1
. 0 © 6:3'0 | @
gF g
0.0 ! 0.0 \
-1.0 - -3.0
tiag —ti -1.0 0.0 1.0 -3.0 0.0 3.0
X<i1> )é;»

FIG. 7. First-order variability diagram foF; and the details of
events around the origin. All variables and parameters are dimen- F|G. 8. (a) and (b) First- and third-order variability diagrams
sionless. constructed from the logistic map far=0.919. (c) and (d) Same
as(a) and(b), but for x=0.925.X X® are defined by Eqg1)
from these points will give the periods of the first-order or-with r,=x; . All variables and parameters are dimensionless.
bits. The second-order orbits are found by examining the

intersections of the patterns in quadrants Il and IV with th . )
diagonal P d tht evalue of u to 0.925 with a ste@ «=0.000 01 in order to

Higher-order variability diagrams are a rapid and conve 0!low changes in system dynamics. The corresponding first-
nient means for assessing the degree of stability of the orbi@nd third-order variability diagram, for example, fqr

of first-order. Indeed, the cluster of points in théh-order = 0-925[see Figs. &) and &d)], show new combinations of
variability diagram and in the vicinity of0,0) defines the ~€vents in the first quadrant not seen for lower valueg.of
complex relationships betweem+2 consecutive intervals. This change starts fronu= ., =0.919 64... . This indi-

However,n+2 equal intervals are also a possibility. Their cates a deceleration of dynamics over three consecutive val-
occurrence may be seen from the first-return maps and wiMes. Therefore, we conclude that the two attractors represent
determine orbits of first order. As the order of the diagramdifferent dynamics. The change in dynamics is more appar-
increases gradually the longer periods disappear. It seenent in the third-order diagram of Figs(t8 and &d). We note

that the shortest period is the most stable one. The value adhe absence of the sequence of five consecutive points in the
n for which an existing orbit disappears is a measure of itsattractor computed withu=0.925 around the origin of the

stability. This example shows that it is possible to obtaincoordinate system. This rules out the presence of consecutive
additional information about the extensively studied Lorenzand equak.

attractor with a simple graphical tool. For «=0.920, the probability to find a point in the first-
order variability diagram, which populates quadrants I, I,
V. LOGISTIC MAP I, and IV are 1.12%, 49.44%, 0%, and 49.44%, respectively

= 0, 0, 0, 0,
In order to demonstrate the sensitivity of the method forand forp=0.925 they are 4.84%, 47.58%, 0%, and 47.58%,

detecting changes in system dynamics with a minimurnreSpeCtively' The zero probgbility of points in.quadrant III.
amount of labor, we analyze the time series generated by tH@eans that there do not exist thrge consecutlve_ _decreasmg
well-known logistic map defined by the equation values ofx for any value ofu. In Fig. 9 we quantlfled the
percentages of the number of threesomes in each quadrant
Xes1=4ux(1—-%), we(0,1, xe[01. (5  for values of u starting from 0.90 tou=1 with a step
Ap=0.001. We see from Fig. 9 that only quadrants Il and IV
Whenever u increases to the accumulation point are populated until the valug=0.919 64... is reached,
Mm.=0.892 48..., the time series generated by Byjstartsto  whereby the population of threesomes starts to appear in
be chaotic. Asu continues to increase from,,, the state of quadrant I. It is interesting to note that for all valuesgthe
the system undergoes a period-doubling bifurcation of thgopulations in quadrants Il and IV are always the same and
chaotic bands untiju= u:;=0.919 64..; then the system there is no population in quadrant lll. The peaks or ravines in
enters into the fully developed chaotic regime. the curves correspond to the periodic windows in the bifur-
Figures 8a) and &b) show the first- and third-order vari- cation diagram. For example, the plateau arownd0.96
ability diagrams for the logistic map witlk=0.919. One stems from a period-three window. Ignoring the influence of
sees from the first-order variability diagram that in this at-the windows, the percentage in quadrant | has a tendency to
tractor only large-small-large and small-large-small se-ncrease withw, whereas in quadrants Il and IV the percent-
guences ok values are possible. We increase gradually theages decrease.
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well-defined structures in a two-dimensional diagram. The
advantage of this mapping is that, although the sequences
may take into account more than three consecutive events,
the two-dimensional projections are extremely helpful visual
aides for elucidation of some aspects of chaotic dynamics.
Moreover, the algorithm is very simple and computationally
§ inexpensive. We showed the advantages of the method for a
detailed study of an abnormal electrocardiogram, which
would not have been possible either with the standard tech-
nigues prevailing in the medical literature such as standard
1 deviation of RR intervals or with fast Fourier transforms of
the same quantities. The usual nonlinear techniques estimat-
ing the invariants of motion will not be of much use for
understanding the detailed nature of the joint heart-
pacemaker dynamics. With our method we show that the
pacemaker tries to keep the heart in a reasonable pace, for
, , A A RR intervals ranging from 520 to 600 msec. However, even-
.92 0.94 0.96 0.98 1.00 tually the arrythmia of the sick heart takes over for short
M episodes. We can even quantify the amount of time the pace-
maker lost control over the sick heart and determine the ex-
FIG. 9. Percentages of the number of points in the four quadtent of the arrythmia.
rants of the first-order variability diagram obtained from the logistic  In the case of Lorenz-attractor we showed that the succes-
map as a function of the parameter Curves marked witt©, [, sion of residence times around the two fixed points obeys
¢, and A represent the percentages in quadrants I, II, ll, and IV,well-defined rules, which is not surprising as we are in the
respectively. presence of deterministic chaos. Moreover, we showed that
the unstable orbits of first order could be found easily by a
The logistic map has been studied extensively in the litvisual inspection of the second-order diagrams. Another in-
erature from different points of vieW30]. For example, in teresting feature of our diagrams is that with simple graphi-
the framework of a general theoretical appro48fi], one cal views we determine the number of rotations around the
introduces a density function that is an eigenfunction of awo fixed points and their successions.
probability-preserving kernel. Thus one computes eigenval- In the case of the well-known and extensively studied
ues and eigenfunctions of the dynamical system. logistic map, we showed that a slight change in the param-
In the example treated here, we have limited ourselves teter u, which determines the route to chaos, can change the
the region of fully developed chaos. The information gath-nature of the attractor considerably. We have seen that a very
ered from our diagrams about the structure of the attractor ismall increase inuw at u= u¢; introduces a combination of
very different from the previous studies and is complemensequences in the dynamics not seen for lower values. of
tary to the previous works. We relate three, four, five, etc. Again we cannot think of a method that can make such a
consecutive events in the time series. Events of differentlistinction so easily by such a simple manner. Therefore, we
magnitude may produce identical points in a two-believe that the variability diagrams are a fast, easy, visual,
dimensional diagram. We have shown that this method isnd inexpensive tool for the study of some aspects of the
extremely sensitive as a very small change in the value of chaotic attractors. The analysis does not require stationarity
gives rise to a qualitatively different diagram obtained withof the data set as the relative values over short sequences are
inexpensive computation. Therefore, we see that the methqgglotted. Noise will generate a background cloud from which
of variability diagrams is a fast and efficient tool for rapid deterministic structures will emerge if present. Our method is
and visual inspection of some aspects of the dynamics of thespecially useful for complex experimental time series such
logistic map in the chaotic regime. as biological data.
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