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Time structure of chaotic attractors: A graphical view
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We present a simple and computationally inexpensive graphical method that unveils subtle correlations
between short sequences of a chaotic time series. Similar events, even from noisy and nonstationary data, are
clustered together and appear as well-defined patterns on a two-dimensional diagram and can be quantified.
The general method is applied to the electrocardiogram of a patient with a malfunctioning pacemaker, the
residence times of trajectories in the Lorenz attractor as well as the logistic map. In each case the diagrams
unveil different aspects of the system’s dynamics.@S1063-651X~97!06607-5#

PACS number~s!: 07.05.Rm, 05.45.1b, 87.90.1y, 02.30.Lt
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I. INTRODUCTION

The characterization of chaotic attractors from a time
ries analysis in general requires long, noiseless, and sta
ary data sets, which are not always available@1–6#. On the
other hand, the existing algorithms, such as the dimen
estimation or the evaluation of Lyapunov exponents or
tropies, are prone to some degree of error@7–17#. In general,
with these methods it is difficult to distinguish between tw
chaotic dynamics that have similar invariants of motion.
addition, these methods are computationally expensive
time consuming. Moreover, whenever the differential eq
tions describing the chaotic attractors are available, it m
happen that a very small change in one of the parameters
change completely the nature of the chaotic attractor. It m
not always be possible to detect these changes by the u
methods. In this paper we show that a graphical method w
similarity to the technique of the first-return maps@18–20#,
correlating three, four, five, etc., events, can be very inf
mative in reveling subtle differences between two differe
time series. The method is extremely simple and comp
tionally economical@21,22#. The correlations are displaye
in two-dimensional ‘‘variability diagrams’’ for easy visual
inspection. In the presence of deterministic chaos, w
defined structures are seen. These structures are a fas
convenient visual tool for unveiling some detailed aspects
system dynamics. It also enables quantification of regu
sequences of data of various lengths and the clusterin
similar events.

We shall illustrate the method by studying three attr
tors. In the first example, a time series is obtained by m
suring the time interval between two successive heartb
denoted as RR of a patient with an implemented malfu
tioning pacemaker. We show how in this case useful a
detailed quantitative information could be obtained fro
various diagrams, which are not available with other st
dard techniques of medical literature such as the fast Fou
transform and the standard deviation of the distribution fu
561063-651X/97/56~1!/1188~9!/$10.00
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tion as well as from the phase-space construction and fi
return maps@23–26#.

In the second example we consider a time series c
posed of the successive residence timest i of the trajectories
of the Lorenz attractor in the basin of attraction of the tw
fixed points across the planex50. We also consider the
succession of timesTi when trajectories cross the plane on
in one direction.Ti represent the unstable periods of t
system. It is shown that in both cases well-defined relati
ships between the successive residence times and succe
periodsTi exist. Moreover, in the first case, the structure
the first-order variability diagrams could be related to t
number of rotations of trajectories around a given point. I
also shown that the acceleration and deceleration of dyna
cal events follow different rules.

In the third example we examine the logistic map, cons
ered in the chaotic regime. Here we also show that a sm
change of the bifurcation parameter introduces a new
quence of events, indicating a qualitative change in the
ture of the attractor, which can be seen immediately with
help of the graphical method.

II. VARIABILITY DIAGRAMS

We consider a time series representing discrete temp
events, discrete variables, or measurements in succes
denoted byr i . This time series may result either from a
unknown dynamical system or as a solution to a set of
ferential equations or chaotic maps. Higher-order forwa
differences for a set of equally spaced discrete variables
function r at a pointi are defined as@27#

D i
n5 (

k50

n

~21!kS nkD r i1n2k , i ,n51,2,3,... .

Fromm consecutive points, we construct anm-dimensional
vector in the following manner:
1188 © 1997 The American Physical Society
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56 1189TIME STRUCTURE OF CHAOTIC ATTRACTORS:A . . .
FIG. 1. ~a! First-return map constructed from time intervals between two heart beats~RR!. The 24-h recording was obtained from
Holter device.~b! First-order variability diagram.~c! Second-order variability diagram.~d! First-order diagram of RR intervals from the 24-
Holter recording of a normal individual.
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~n!5 (

k50

n

~21!kS nkD r i1n2k ,

Xi11
~n! 5 (

k50

n

~21!kS nkD r i1n112k , n50,1,2,... ~1!

A

Xi1m21
~n! 5 (

k50

n

~21!kS nkD r i1n1m212k ,

which projects the evolution of the system’s dynamics in
anm-dimensional space.n is the number of consecutive e
ements in a time series. In the presence of chaotic dynam
well-defined structures for alln could be seen.

For the particular casen50 andm52, one recovers the
familiar first-return map, which is denoted as the zero
order ‘‘variability diagram’’ and correlates two adjace
points @see Fig. 1~a!#.
ics

-

If n51 andm52, thenXi
(1)5r i112r i andXi11

(1) 5r i12
2r i11 and we speak of afirst-order variability diagram in
two dimensions. This diagram correlates three succes
values. By nature of its construction, if three magnitudes
identical, thenXi

(1)5Xi11
(1) 50. Any positive or negative

value of coordinates indicates a departure from absolute
riodicity in the values ofr . If Xi

(1).0 andXi11
(1) .0, then we

are in the presence of three successive intervals such th
each step the value ofr increases. Ifr represents time inter
vals, this shows a kind of deceleration in the dynamical p
cess. The corresponding point will populate quadrant I@see
Fig. 1~b!#. On the contrary,Xi

(1),0 andXi11
(1) ,0 indicate a

gradual shortening of the values ofr , thus an acceleration o
the process. The corresponding point appears in quadran
Short-long-short values ofr are represented byXi

(1).0 and
Xi11
(1) ,0, whereasXi

(1),0 andXi11
(1) .0 are related to long-

short-long values. They populate, respectively, quadrant
and IV. Let us note that the first-order variability diagram
a very different projection from the first-return map co
structed in three-dimensional space, which also correla
these quantities@28#.
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1190 56P. MAURER, HAI-DA WANG, AND A. BABLOYANTZ
A second-ordervariability diagram can be constructed b
taking n52 and m52; then Xi

(2)5r i1222r i111r i and
Xi11
(2) 5r i1322r i121r i11 . Figure 1~c! shows such a dia

gram. The points on the diagonalA obey the relationr i
23r i1113r i122r i1350, whereas the diagonalB is the lo-
cus of points such asr i112r i5r i132r i12 .

Once a pattern is seen in a low-order diagram, the num
cal value of ther i forming the pattern can be found easil
For example, in the case of a first-order diagram, we cho
a pattern or a piece of pattern of interest and isolate
corresponding points. We construct a first-return map fr
these points only, which will reveal their numerical values
combined with information obtained from the first-order d
gram. If, for example, the pattern emerges from quadra
~Xi

(1).0 andXi11
(1) .0!, following the definition of Eqs.~1!,

we have the extra informationr i12.r i11.r i needed in
combination with first-return maps to determine the ex
values of successive threesomes. This procedure will bec
more clear in the next section. Similar reasoning is used
a second-order diagram in two dimensions. Again, this w
be illustrated in the following section.

As the order of diagrams increases, the interpretation
patterns in two-dimensional space becomes difficult; nev
theless, they still are very useful for a visual inspection
system dynamics. However, as the origin of coordinate
also the locus ofn12 successive and equal values in anm
52 space, Eqs.~1! are a means of sorting out, displaying
a cluster, and also quantifying all these almost eq
stretches whenever they arise in a long data set.

Let us note that the first-order variability diagram can
considered as the mapping of the forward differences of
function at two successive points, whereas the second-o
diagram is the mapping of second-order differences take
two adjacent points. As the order of the diagrams increa
the domain of correlations increases also. Inspired by
idea, we introduced the method of variability diagram
which should not be confused with multidimensional fir
return maps.

III. CARDIAC ATTRACTOR

A patient with a cardiac pathology received a pacema
implant, which unfortunately did not function properly. Th
electrocardiogram of this patient was recorded over 2
with a Holter device and the time interval between two s
cessive beats, so-called RR intervals, were evaluated
commercial software. Even if the heart of a patient we
normal, a degree of variability would still be seen. Figu
1~d! depicts the first-order variability diagram of a norm
individual. It is seen that the difference between two succ
sive RR intervals does not exceed 200 msec. However, in
case of our patient the pacemaker did not fulfill its role pro
erly and could not restore normal dynamics of the card
activity. There is a competition between the ailing heart a
the pacemaker. This gives rise to an extremely large h
rate variability ~HRV!. The analysis of the temporal struc
tures and the numerical values of the sequences of even
this particular heart may furnish valuable clues to the ca
ologist.

Figure 1~a! shows the first-return map of this patient. Th
HRV is separated into three parts. All we can say from t
ri-
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diagram is that the two small patches represent, respectiv
RR intervals of 320–500 msec followed by short intervals
100–150msec and the same short interval followed by la
intervals ranging between 350 and 575 msec. The conten
the third patch is still less informative as it merely describ
RR intervals in the range 375–700 msec that follow ea
other.

In our variability diagrams the number of patches i
creases as the order of diagrams increases. Therefore
resolution of the sequence analysis increases substant
Moreover, the successive values of longer pieces of data
come available. Figures 1~b! and 1~c! exhibit, respectively,
the first- and second-order variability diagrams. In a diagr
of nth order, each point has a coordinate defined by

Xi
~n!5 (

k50

n

~21!kS nkD r i1n2k ,

~2!

Xi11
~n! 5 (

k50

n

~21!kS nkD r i1n112k .

Let us analyze in detail some subparts of the first-or
diagram. According to the definition of Eqs.~2!, quadrant I
corresponds to a deceleration of the heart over three RR
tervals. For example, we consider the patch denoted byPI in
Fig. 1~b! and construct the first-return map only from the
points. From the discussion Sec. II, it is easy to find th
three successive RR intervals in the neighborhood of 1
375, and 535 msec@see Fig. 2~a!# contribute to the HRV.
Similarly, the analysis ofPIII in quadrant III shows contri-
butions in the neighborhood of the sequences 500, 470,
140 msec. Figure 2~b! is the first-return map constructe
from the selected points in patchPII in quadrant II. There-
fore, we can deduce that two different sequences~380, 140,
and 380 msec and 620, 380, and 620 msec! contribute to
patch PII . In the same fashion a piece for quadrant
(PIV) shows the following events: 130, 380, and 130 ms
and 400, 650 and 400 msec. This illustrates the fact that
diagrams cluster together sequences of events that conse
given relationship. Referring to the definition of the firs
order diagram, the points contained in a square of half-wi
of 50 msec centered around the origin give an estimation
the regularity of the heart or sinus rhythm over three be
@23#. This choice allows only a difference of 50 msec b
tween two successive RR intervals. In our example, if a fi
return map is constructed from these points, the regula
only appears in the range 450–550 msec and inclu
32.47% of the total data, indicating the degree of efficien
of the pacemaker. This contrasts with the value of 75.3
found in the normal heart of Fig. 1~d!. Similar quantitative
discussions could be made for all patches or any chosen
eas of the large central patch.

Now let us analyze the second-order variability diagra
of Fig. 1~c!. Again every patch could be analyzed separat
by keeping in mind that we are in the presence of four R
intervals, denoted asr i , which obey

Xi
~2!5r i1222r i111r i ,

~3!

Xi11
~2! 5r i1322r i121r i11 .
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56 1191TIME STRUCTURE OF CHAOTIC ATTRACTORS:A . . .
The RR values obtained from the first-return map toget
with the sign and numerical values ofXi

(2) andXi11
(2) for a

given patch makes it possible, for example, to conclude
the structurePV in quadrant II has contributions from th
vicinity of the four successions of 270, 530, 140, and 5
msec. The number of points in the square of the half-wi
of 50 msec centered around the origin accounts for 23.6
of that of the total data. Let us note that this number enco
passes not only a sinus rhythm but also all foursomes ob
ing Eqs. ~3!. The same analysis can be performed for a
selected area in the second-order variability diagram with
help of the graphical method presented in this paper.

Let us note that all points on the diagonal B of the seco
order diagram have a particular relationship asXi11

(2) 5

2Xi
(2) and they correspond to an alternation in the four c

secutive RR intervals.
The analysis of higher-order diagrams is not easy. Ho

ever, they can still be useful in two ways. A visual inspecti
of the diagrams may furnish information about the time
ries. Although it is not easy to estimate the values ofn12
successive events for all patches, the fact that a patch e
indicates the existence of privileged relationships betw

FIG. 2. ~a! First-return map of selected points from the patte
in the squarePI in Fig. 1~b!. ~b! First-return map of selected point
from a square atPII in Fig. 1~b!.
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the events obeying the definition of Eqs.~2!; thus they follow
a sort of regular behavior. Moreover, the points around
origin of diagrams of all order stem from complex relatio
ships between RR intervals. However, very close to the
gin, the most probable combination is a sequence of alm
equal RR intervals. Figure 3 shows the percentages of th
sequences contained in a square centered at the origin
half-width of 25, 10, and 5 msec, respectively, for variabil
diagrams up to order 10. These values must be comp
with the 5-msec error measurements of RR values.

We see that with the help of variability diagrams it
possible to analyze in detail short stretches of cardiac ev
over 24-h periods, find the regularities, and evaluate
quence values. The fact that these results are displayed
two-dimensional diagram and require an extremely sim
and fast algorithm makes it of great value for medical dia
noses.

IV. LORENZ ATTRACTOR

In this section we use the variability diagrams to unv
some aspects of temporal structures that arise in the w
known Lorenz attractor. The Lorenz attractor is described
the set of dimensionless differential equations

dx

dt
5Pr~y2x!,

dy

dt
52xz1rx2y,

dz

dt
5xy2bz, ~4!

with Pr510, b52.66, andr528. With this set of param-
eters the dynamics described by Eqs.~4! exhibits chaotic
behavior. The trajectories of the system evolve around
fixed points with random residence times.

FIG. 3. Percentage ofn12 regular sequences as a function
the order of diagrams constructed from RR intervals of the pat
in Fig. 1.
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1192 56P. MAURER, HAI-DA WANG, AND A. BABLOYANTZ
Two series of events will be considered. In the first ca
we record the residence timet i around each fixed point@29#.
Figure 4~a! shows the time of passage across thex50 plane.
In the second caseTi5t i1t i11 is the sum of the two suc
cessive residence times around each fixed point or the pe
of an unstable orbit@Fig. 4~b!#.

Figure 5~a! shows the general structure of the first-ord
variability diagram constructed from the time seriest i . One
sees immediately well-defined and quantized structure
the case of Lorenz attractor, whereas a random noise
show a homogenous distribution of intervals@21#. The de-
tails of the structure as well as its general shape result f
the distribution function oft i , which is not uniform and
exhibits several discrete peaks. This fact explains the blu
boundaries of the diagram and also the form of the struc
in the second quadrant.

In the first-order variability diagram, all four quadran
exhibit different densities of the population of points. Figu
5~b! is a magnification of the events in the vicinity of th
origin of the axis. One sees immediately several well-defin
curves, which suggest well-defined temporal sequen
However, the most salient feature is the assymmetry betw
the four quadrants. From the definition of the first-order d
gram we infer that three successive shortening, three suc
sive increasing, and long-short-long and short-long-sh
times are not related in the same manner. A detailed ins
tion of other substructures shows again that in each quad
a different structure is seen.

The first-order variability diagram can furnish detailed i
formation about the physiognomy of the attractor. T
checkerboard-type structure is specific to the Lorenz att
tor. Each element of the checkerboard is a grouping of
t i with a well-defined relationship regardless of the intrin
magnitude. The U-shaped patterns are predominant in
upper half plane. They indicate that twot i of comparable
magnitude are followed by a much largert i . On the con-

FIG. 4. Temporal evolution of variablex(t) of the Lorenz at-
tractor.~a! Definition of t i . ~b! Definition of Ti . All variables and
parameters are dimensionless.
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trary, in the lower half plane they indicate two larget i fol-
lowed by a much smaller time.

From the first-order variability diagram we can deduce
pattern of rotation of trajectories around the two fixed poi
in the course of three transitions across thex50 plane. We
consider the number of rotations made by the trajecto
around one of the fixed points before the transition to
basin of attraction of the second fixed point and measure
time. Figure 6 shows this number as a function of time.
expected, for a given number of rotations, a large time va
tion is seen. If one neglects regions of small overlaps w
small probability, it is possible to correlate residence tim
with the number of turns around one of the fixed points.
overlapping regions an error of one turn is possible.

Let us consider the cluster of points around the origin
the square of size@(20.3,20.3),(0.3,0.3)#. It accounts for
17.737% of data set and by construction indicates three
most equalt i in succession. A first-return map construct
only from these points@see Fig. 5~d!# gives thet i for each
threesome. With the help of Fig. 6 we see that one to
consecutive and equal turns are possible in this data set

A similar analysis indicates that the first structuresa on
the diagonal in quadrant I@see Fig. 5~b!# group a succession
of residence times such that in each step one more tur
added to the trajectories~1.496%!. The lowest combination
is one turn followed by two and three turns. The reve
situation is seen for the first structuresb on the diagonal of
quadrant III~1.502%!. Here a high number of rotations de
creases by a unit in each transition. The lowest combina
is 3, 2, and 1.

In substructuresc two n turns are followed by ann11
turn, with a minimum ofn52 ~0.733%!. In d the succession
is n, n11, andn with nmin51 ~5.859%!. Structures further
away from the center indicate a larger variation in the nu
ber of successive turns. For example, if we consider only
various L-shaped curves on the diagonal of quadrant IV
following combination@25# are seen starting from substru
ture d: 1, 2, and 1 and 1, 3, and 1~2.854%!; 1, 4, and 1
~1.6345%!, etc. Ine of quadrant II we haven11, n, andn
11 with 0.4% of the data set.

Such a detailed analysis of the temporal picture of
attractor can be performed for all substructures or any sm
piece of a substructure of Fig. 5~a!. The following picture
emerges from this analysis. For the data set considered
combinations of the numbers of rotations are possible. Ho
ever, the most probable one is three successive transition
the same number of turns. The next most probable comb
tion is 1,n, and 1, withn52–4.

Figure 5~c! shows the details in the vicinity of the origi
of the second-order variability diagram. One still sees we
defined patterns and dissymmetry of curves in the four qu
rants. Keeping the integration time constant, we construc
diagrams up to eight order. At this order one still sees str
tured patterns, although somewhat blurred. This may be
in part to the fact that as the order of diagrams increases
coordinates of points also increases@see definitions~2!# and
there are few points for defining a curve. An analysis simi
to the one performed above is still possible for second-or
variability diagrams and will not be reported here.

Second-order variability diagrams fromt i are convenient
visual aides for finding the first-order periods of the Lore
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FIG. 5. ~a! First-order variability diagram of the Lorenz attractor fort i . ~b! Magnification of the diagram in the vicinity of the origin
~c! Magnification of a second-order variability diagram.~d! First-return map constructed from the points around the original in~b!. All
variables and parameters are dimensionless.
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attractor. Indeed, by construction@see Eqs.~2!# we see that
the intersection of the diagonal in quadrants II and IV w
the patterns are the locus of points such as (t i112t i)
5(t i132t i12) and therefore defines an order-one orbit
two successive times define a period.

The general aspect of the first-order variability diagra
constructed fromTi is the same as in the preceding case~see
Fig. 7!. However, as expected, the individual subpatte
show a different structure. A magnification of events arou
the origin is depicted in Fig. 7 and again we see mark
dissymmetries between events in the four quadrants. As
pected, we see a more complex relationship than the
shown in the first-order variability diagrams construct
from t i .

In the present case the diagrams become blurred at fo
order asTi is much longer thant i . Here the number of points
defining a curve decrease rapidly in parallel with the incre
in the value of the coordinates.

Referring to the definition ofTi , we see that presently th
first-order orbits of the Lorenz attractor are found by taki
all points in the vicinity of the origin. The first-return ma
s

s
d
d
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rth
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FIG. 6. Number of rotations as a function of residence time
the Lorenz attractor. All variables and parameters are dimens
less.
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1194 56P. MAURER, HAI-DA WANG, AND A. BABLOYANTZ
from these points will give the periods of the first-order o
bits. The second-order orbits are found by examining
intersections of the patterns in quadrants II and IV with
diagonal.

Higher-order variability diagrams are a rapid and con
nient means for assessing the degree of stability of the o
of first-order. Indeed, the cluster of points in thenth-order
variability diagram and in the vicinity of~0,0! defines the
complex relationships betweenn12 consecutive intervals
However,n12 equal intervals are also a possibility. The
occurrence may be seen from the first-return maps and
determine orbits of first order. As the order of the diagra
increases gradually the longer periods disappear. It se
that the shortest period is the most stable one. The valu
n for which an existing orbit disappears is a measure of
stability. This example shows that it is possible to obta
additional information about the extensively studied Lore
attractor with a simple graphical tool.

V. LOGISTIC MAP

In order to demonstrate the sensitivity of the method
detecting changes in system dynamics with a minim
amount of labor, we analyze the time series generated by
well-known logistic map defined by the equation

xk1154mxk~12xk!, mP~0,1#, xkP@0,1#. ~5!

Whenever m increases to the accumulation poi
m`50.892 48..., the time series generated by Eq.~5! starts to
be chaotic. Asm continues to increase fromm` , the state of
the system undergoes a period-doubling bifurcation of
chaotic bands untilm5mc150.919 64...; then the system
enters into the fully developed chaotic regime.

Figures 8~a! and 8~b! show the first- and third-order vari
ability diagrams for the logistic map withm50.919. One
sees from the first-order variability diagram that in this
tractor only large-small-large and small-large-small
quences ofx values are possible. We increase gradually

FIG. 7. First-order variability diagram forTi and the details of
events around the origin. All variables and parameters are dim
sionless.
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value ofm to 0.925 with a stepDm50.000 01 in order to
follow changes in system dynamics. The corresponding fi
and third-order variability diagram, for example, form
50.925@see Figs. 8~c! and 8~d!#, show new combinations o
events in the first quadrant not seen for lower values ofm.
This change starts fromm5mc150.919 64... . This indi-
cates a deceleration of dynamics over three consecutive
ues. Therefore, we conclude that the two attractors repre
different dynamics. The change in dynamics is more app
ent in the third-order diagram of Figs. 8~b! and 8~d!. We note
the absence of the sequence of five consecutive points in
attractor computed withm50.925 around the origin of the
coordinate system. This rules out the presence of consecu
and equalx.

For m50.920, the probability to find a point in the firs
order variability diagram, which populates quadrants I,
III, and IV are 1.12%, 49.44%, 0%, and 49.44%, respectiv
and form50.925 they are 4.84%, 47.58%, 0%, and 47.58
respectively. The zero probability of points in quadrant
means that there do not exist three consecutive decrea
values ofx for any value ofm. In Fig. 9 we quantified the
percentages of the number of threesomes in each quad
for values ofm starting from 0.90 tom51 with a step
Dm50.001. We see from Fig. 9 that only quadrants II and
are populated until the valuem50.919 64... is reached
whereby the population of threesomes starts to appea
quadrant I. It is interesting to note that for all values ofm, the
populations in quadrants II and IV are always the same
there is no population in quadrant III. The peaks or ravines
the curves correspond to the periodic windows in the bif
cation diagram. For example, the plateau aroundm'0.96
stems from a period-three window. Ignoring the influence
the windows, the percentage in quadrant I has a tendenc
increase withm, whereas in quadrants II and IV the percen
ages decrease.

n- FIG. 8. ~a! and ~b! First- and third-order variability diagram
constructed from the logistic map form50.919. ~c! and ~d! Same
as ~a! and ~b!, but form50.925.Xi

(1),Xi
(3) are defined by Eqs.~1!

with r i5xi . All variables and parameters are dimensionless.
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The logistic map has been studied extensively in the
erature from different points of view@30#. For example, in
the framework of a general theoretical approach@31#, one
introduces a density function that is an eigenfunction o
probability-preserving kernel. Thus one computes eigen
ues and eigenfunctions of the dynamical system.

In the example treated here, we have limited ourselve
the region of fully developed chaos. The information ga
ered from our diagrams about the structure of the attracto
very different from the previous studies and is complem
tary to the previous works. We relate three, four, five, e
consecutive events in the time series. Events of differ
magnitude may produce identical points in a tw
dimensional diagram. We have shown that this method
extremely sensitive as a very small change in the value om
gives rise to a qualitatively different diagram obtained w
inexpensive computation. Therefore, we see that the me
of variability diagrams is a fast and efficient tool for rap
and visual inspection of some aspects of the dynamics of
logistic map in the chaotic regime.

VI. CONCLUSION

We have introduced here a simple graphical method
projects the trajectories of chaotic attractors into vario
planes in such a way as to unveil very subtle correlati
between consecutive sequences of events. The merit o
method resides in the fact that these sequences may ex
over more than ten events. The sequences with similar r
tionships but not the same absolute values may appea

FIG. 9. Percentages of the number of points in the four qu
rants of the first-order variability diagram obtained from the logis
map as a function of the parameterm. Curves marked withs, h,
L, andn represent the percentages in quadrants I, II, III, and
respectively.
-
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s
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la-
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well-defined structures in a two-dimensional diagram. T
advantage of this mapping is that, although the sequen
may take into account more than three consecutive eve
the two-dimensional projections are extremely helpful vis
aides for elucidation of some aspects of chaotic dynam
Moreover, the algorithm is very simple and computationa
inexpensive. We showed the advantages of the method f
detailed study of an abnormal electrocardiogram, wh
would not have been possible either with the standard te
niques prevailing in the medical literature such as stand
deviation of RR intervals or with fast Fourier transforms
the same quantities. The usual nonlinear techniques esti
ing the invariants of motion will not be of much use fo
understanding the detailed nature of the joint hea
pacemaker dynamics. With our method we show that
pacemaker tries to keep the heart in a reasonable pace
RR intervals ranging from 520 to 600 msec. However, ev
tually the arrythmia of the sick heart takes over for sh
episodes. We can even quantify the amount of time the pa
maker lost control over the sick heart and determine the
tent of the arrythmia.

In the case of Lorenz-attractor we showed that the suc
sion of residence times around the two fixed points ob
well-defined rules, which is not surprising as we are in t
presence of deterministic chaos. Moreover, we showed
the unstable orbits of first order could be found easily by
visual inspection of the second-order diagrams. Another
teresting feature of our diagrams is that with simple grap
cal views we determine the number of rotations around
two fixed points and their successions.

In the case of the well-known and extensively studi
logistic map, we showed that a slight change in the para
eterm, which determines the route to chaos, can change
nature of the attractor considerably. We have seen that a
small increase inm at m5mc1 introduces a combination o
sequences in the dynamics not seen for lower values om.
Again we cannot think of a method that can make suc
distinction so easily by such a simple manner. Therefore,
believe that the variability diagrams are a fast, easy, vis
and inexpensive tool for the study of some aspects of
chaotic attractors. The analysis does not require stationa
of the data set as the relative values over short sequence
plotted. Noise will generate a background cloud from whi
deterministic structures will emerge if present. Our method
especially useful for complex experimental time series s
as biological data.
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